1 Funzioni

In questo documento vediamo alcune funzioni personalizzate che possono essere utili durante il corso. Per poterle utilizzare potete copiare e incollare direttamente la funzione per poi salvarla come oggetto.

1.1 put_random_na()

put_random_na <- function(data, n){
    
    pos <- list(rows = 1:nrow(data),
                cols = 1:ncol(data))
    
    pos <- expand.grid(pos)
    
    na_pos <- sample(1:nrow(pos), n)
    
    for (i in 1:length(na_pos)) {
        
        na_pos_i <- pos[na_pos[i], ]
        
        data[na_pos_i[[1]], na_pos_i[[2]]] <- NA
        
    }
    
    return(data)
    
}

Utilizzo:

put_random_na(mtcars, 30)
##                      mpg cyl  disp  hp drat    wt  qsec vs am gear carb
## Mazda RX4           21.0   6 160.0 110 3.90 2.620 16.46  0  1   NA   NA
## Mazda RX4 Wag       21.0   6 160.0 110 3.90 2.875 17.02 NA  1    4    4
## Datsun 710          22.8   4 108.0  93 3.85 2.320 18.61  1  1    4    1
## Hornet 4 Drive      21.4   6 258.0 110   NA 3.215 19.44  1  0    3    1
## Hornet Sportabout   18.7   8 360.0 175 3.15 3.440 17.02  0  0    3    2
## Valiant             18.1   6 225.0 105 2.76 3.460 20.22  1  0    3    1
## Duster 360            NA   8 360.0 245 3.21 3.570 15.84  0  0    3    4
## Merc 240D           24.4   4    NA  62 3.69 3.190 20.00  1  0    4    2
## Merc 230            22.8   4 140.8  95 3.92    NA 22.90  1  0    4   NA
## Merc 280            19.2   6 167.6 123 3.92 3.440 18.30  1  0    4    4
## Merc 280C           17.8   6 167.6 123 3.92 3.440 18.90  1 NA    4    4
## Merc 450SE          16.4   8 275.8 180 3.07 4.070 17.40 NA  0    3    3
## Merc 450SL          17.3   8 275.8 180   NA 3.730 17.60  0  0    3    3
## Merc 450SLC         15.2   8 275.8 180   NA 3.780 18.00  0  0    3    3
## Cadillac Fleetwood  10.4   8    NA 205 2.93 5.250 17.98  0  0   NA    4
## Lincoln Continental 10.4   8 460.0 215 3.00 5.424 17.82 NA  0    3    4
## Chrysler Imperial   14.7  NA 440.0 230 3.23 5.345 17.42  0  0    3    4
## Fiat 128            32.4   4  78.7  66 4.08 2.200 19.47  1  1    4    1
## Honda Civic         30.4   4  75.7  52 4.93 1.615 18.52 NA  1    4    2
## Toyota Corolla      33.9   4  71.1  65 4.22 1.835 19.90  1  1    4    1
## Toyota Corona       21.5   4 120.1  97 3.70 2.465 20.01  1  0    3    1
## Dodge Challenger      NA   8 318.0 150 2.76 3.520 16.87  0  0   NA    2
## AMC Javelin           NA   8 304.0 150 3.15    NA 17.30  0  0    3    2
## Camaro Z28            NA   8 350.0 245 3.73 3.840 15.41  0  0    3    4
## Pontiac Firebird    19.2   8 400.0 175 3.08 3.845 17.05  0  0   NA    2
## Fiat X1-9           27.3   4  79.0  66 4.08 1.935 18.90  1  1    4   NA
## Porsche 914-2       26.0   4 120.3  NA 4.43 2.140    NA  0  1    5    2
## Lotus Europa        30.4   4  95.1 113 3.77 1.513 16.90  1  1    5    2
## Ford Pantera L      15.8   8 351.0 264 4.22 3.170 14.50 NA  1    5    4
## Ferrari Dino          NA   6 145.0  NA 3.62 2.770 15.50  0  1    5    6
## Maserati Bora       15.0   8 301.0 335 3.54 3.570 14.60  0 NA    5    8
## Volvo 142E          21.4   4 121.0 109 4.11 2.780 18.60  1  1    4    2

1.2 randomize_case()

randomize_case <- function(x, nletters = 15, n_prob = 0.30){
    new_x <- tolower(x)
    to_randomize <- sample(LETTERS, nletters)
    names(to_randomize) <- tolower(to_randomize)
    n_to_randomize <- floor(length(x) * n_prob)
    id_to_randomize <- sample(1:length(x), n_to_randomize)
    new_x[id_to_randomize] <- stringr::str_replace_all(new_x[id_to_randomize], to_randomize)

    return(new_x)
}

Utilizzo:

randomize_case(iris$Species)
##   [1] "setosa"     "setosa"     "setosa"     "setosa"     "setosa"     "setosa"    
##   [7] "SEToSa"     "SEToSa"     "setosa"     "setosa"     "SEToSa"     "setosa"    
##  [13] "setosa"     "SEToSa"     "SEToSa"     "setosa"     "setosa"     "SEToSa"    
##  [19] "setosa"     "setosa"     "setosa"     "setosa"     "SEToSa"     "SEToSa"    
##  [25] "setosa"     "setosa"     "setosa"     "SEToSa"     "setosa"     "SEToSa"    
##  [31] "setosa"     "setosa"     "setosa"     "SEToSa"     "SEToSa"     "setosa"    
##  [37] "setosa"     "SEToSa"     "setosa"     "SEToSa"     "setosa"     "setosa"    
##  [43] "setosa"     "setosa"     "setosa"     "setosa"     "setosa"     "setosa"    
##  [49] "SEToSa"     "setosa"     "versicolor" "versicolor" "versicolor" "versicolor"
##  [55] "VERSICoLoR" "versicolor" "VERSICoLoR" "VERSICoLoR" "versicolor" "versicolor"
##  [61] "versicolor" "versicolor" "VERSICoLoR" "versicolor" "VERSICoLoR" "versicolor"
##  [67] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor" "VERSICoLoR"
##  [73] "VERSICoLoR" "VERSICoLoR" "versicolor" "versicolor" "versicolor" "VERSICoLoR"
##  [79] "VERSICoLoR" "versicolor" "versicolor" "versicolor" "VERSICoLoR" "VERSICoLoR"
##  [85] "versicolor" "versicolor" "versicolor" "versicolor" "versicolor" "versicolor"
##  [91] "versicolor" "versicolor" "VERSICoLoR" "VERSICoLoR" "versicolor" "versicolor"
##  [97] "versicolor" "versicolor" "versicolor" "versicolor" "VIRgINICa"  "VIRgINICa" 
## [103] "virginica"  "VIRgINICa"  "virginica"  "VIRgINICa"  "virginica"  "virginica" 
## [109] "VIRgINICa"  "VIRgINICa"  "virginica"  "virginica"  "virginica"  "virginica" 
## [115] "virginica"  "virginica"  "virginica"  "VIRgINICa"  "VIRgINICa"  "virginica" 
## [121] "VIRgINICa"  "VIRgINICa"  "VIRgINICa"  "virginica"  "virginica"  "virginica" 
## [127] "virginica"  "virginica"  "virginica"  "virginica"  "VIRgINICa"  "virginica" 
## [133] "virginica"  "virginica"  "virginica"  "virginica"  "virginica"  "virginica" 
## [139] "virginica"  "virginica"  "virginica"  "VIRgINICa"  "virginica"  "virginica" 
## [145] "VIRgINICa"  "VIRgINICa"  "VIRgINICa"  "virginica"  "virginica"  "virginica"
LS0tCnRpdGxlOiAiQ3VzdG9tIEZ1bmN0aW9ucyIKb3V0cHV0OiAKICAgIGJvb2tkb3duOjpodG1sX2RvY3VtZW50MjoKICAgICAgICB0b2M6IHRydWUKICAgICAgICB0b2NfZmxvYXQ6IHRydWUKICAgICAgICBjb2RlX2Rvd25sb2FkOiB0cnVlCmNzczogWyIuLi9maWxlcy9jc3MvY291cnNlX2h0bWwuY3NzIl0KLS0tCgpgYGB7ciBzZXR1cCwgaW5jbHVkZT1GQUxTRX0Ka25pdHI6Om9wdHNfY2h1bmskc2V0KGVjaG8gPSBUUlVFKQpgYGAKCiMgRnVuemlvbmkKCkluIHF1ZXN0byBkb2N1bWVudG8gdmVkaWFtbyBhbGN1bmUgZnVuemlvbmkgKipwZXJzb25hbGl6emF0ZSoqIGNoZSBwb3Nzb25vIGVzc2VyZSB1dGlsaSBkdXJhbnRlIGlsIGNvcnNvLiBQZXIgcG90ZXJsZSB1dGlsaXp6YXJlIHBvdGV0ZSBjb3BpYXJlIGUgaW5jb2xsYXJlIGRpcmV0dGFtZW50ZSBsYSBmdW56aW9uZSBwZXIgcG9pIHNhbHZhcmxhIGNvbWUgb2dnZXR0by4KCiMjIGBwdXRfcmFuZG9tX25hKClgCgpgYGB7cn0KcHV0X3JhbmRvbV9uYSA8LSBmdW5jdGlvbihkYXRhLCBuKXsKICAgIAogICAgcG9zIDwtIGxpc3Qocm93cyA9IDE6bnJvdyhkYXRhKSwKICAgICAgICAgICAgICAgIGNvbHMgPSAxOm5jb2woZGF0YSkpCiAgICAKICAgIHBvcyA8LSBleHBhbmQuZ3JpZChwb3MpCiAgICAKICAgIG5hX3BvcyA8LSBzYW1wbGUoMTpucm93KHBvcyksIG4pCiAgICAKICAgIGZvciAoaSBpbiAxOmxlbmd0aChuYV9wb3MpKSB7CiAgICAgICAgCiAgICAgICAgbmFfcG9zX2kgPC0gcG9zW25hX3Bvc1tpXSwgXQogICAgICAgIAogICAgICAgIGRhdGFbbmFfcG9zX2lbWzFdXSwgbmFfcG9zX2lbWzJdXV0gPC0gTkEKICAgICAgICAKICAgIH0KICAgIAogICAgcmV0dXJuKGRhdGEpCiAgICAKfQpgYGAKClV0aWxpenpvOgoKYGBge3J9CnB1dF9yYW5kb21fbmEobXRjYXJzLCAzMCkKYGBgCgojIyBgcmFuZG9taXplX2Nhc2UoKWAKCmBgYHtyfQpyYW5kb21pemVfY2FzZSA8LSBmdW5jdGlvbih4LCBubGV0dGVycyA9IDE1LCBuX3Byb2IgPSAwLjMwKXsKICAgIG5ld194IDwtIHRvbG93ZXIoeCkKICAgIHRvX3JhbmRvbWl6ZSA8LSBzYW1wbGUoTEVUVEVSUywgbmxldHRlcnMpCiAgICBuYW1lcyh0b19yYW5kb21pemUpIDwtIHRvbG93ZXIodG9fcmFuZG9taXplKQogICAgbl90b19yYW5kb21pemUgPC0gZmxvb3IobGVuZ3RoKHgpICogbl9wcm9iKQogICAgaWRfdG9fcmFuZG9taXplIDwtIHNhbXBsZSgxOmxlbmd0aCh4KSwgbl90b19yYW5kb21pemUpCiAgICBuZXdfeFtpZF90b19yYW5kb21pemVdIDwtIHN0cmluZ3I6OnN0cl9yZXBsYWNlX2FsbChuZXdfeFtpZF90b19yYW5kb21pemVdLCB0b19yYW5kb21pemUpCgogICAgcmV0dXJuKG5ld194KQp9CmBgYAoKVXRpbGl6em86CgpgYGB7cn0KcmFuZG9taXplX2Nhc2UoaXJpcyRTcGVjaWVzKQpgYGAKCgoKCg==